HYDRO-TECHNISCHER BERICHT

A 5.1

zum Antrag

auf WIEDERBEWILLIGUNG

der bestehenden Triebwerksanlage "Mittermühle"

auf PLANFESTSTELLUNG

- Umbau der bestehenden Fischpassanlage
- Umbau eines bestehenden Feinrechens (Triebwerk 2)

Unternehmensträger: List Andreas und Reinhard GbR

Mittermühlenweg 16

94078 Freyung

Gewässer: Saußbach

Landkreis: Freyung-Grafenau

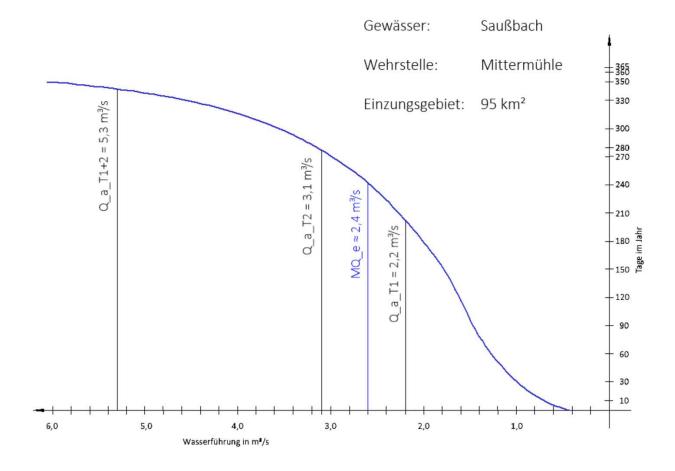
Regierungsberzirk: Niederbayern

Planung: Ing.-Büro Baumgartner

Frimhöring 1

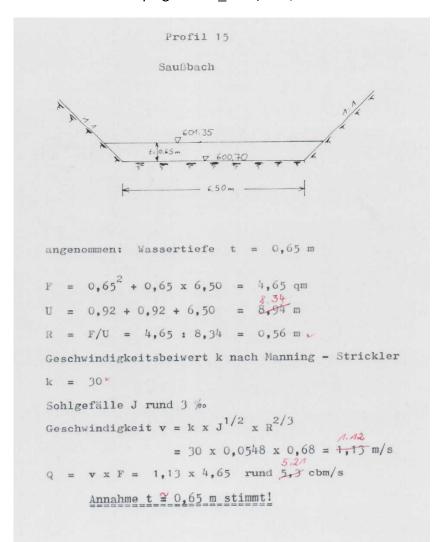
94099 Ruhstorf a. d. Rott info@ib-baumgartner.eu +49 / 170 / 588 7546

<u>Inhalt:</u>

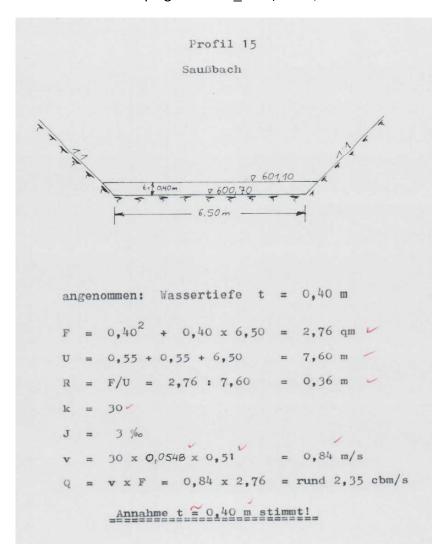

1.	Wasse	erführung	3
2	۸hfluc	rführungsdauerlinies	:
۷.	Abilus	Suddettille	
3.	Wasse	erspiegellinie	4
	3.1.	Wasserspiegel bei $Q_a = 5.3 \text{ m}^3/\text{s}$	2
	3.2.	Wasserspiegel bei MQ_e = 2,35 m ³ /s	Ē
4.	Berech	nnung des Gefälles	6
	4.1.	Ausbaugefälle bei Q_a = 5,3 m³/s	(
	4.2.	mittleres, nutzbares Gefälle bei MQ_e = 2,35 m³/s	6
5.	Berech	nnung der Turbinenleistung	
6.	Berech	nnung der Staulänge (nach Rühlmann)	8
7.	Berech	nnung der Abflüsse über die Wehranlage	9
8.	Berech	nnung der Leistung der Schützen	10
	8.1.	Eisablassschütze im Wehrkörper	10
	8.2.	Grundablassschütze im Wehrkörper	10
	8.3.	Grundablassschütze bei Triebwerk 1	13
9.	FAH h	ydrauliche Berechnung Fischpass	12
10) Anströ	omgeschwindigkeit Rechenfeld	1:

1. Wasserführung

t	[Tage]	5	5	20	30	30	30	30	30	30	30	30	30	30	17	18
Q	[m³/s]	0,43	0,62	0,84	1,15	1,38	1,54	1,69	1,88	2,12	2,40	2,75	3,23	4,00	4,90	5,60
t*Q	[Tage*m³/s]	2,15	3,10	16,80	34,35	41,40	46,05	50,70	56,40	63,45	72,00	82,50	96,75	120,00	83,30	100,80


Summe t*Q	=	869,75 Tage*m∛s
MQ_e		2,38 m³/s

2. <u>Abflussdauerlinie</u>


3. <u>Wasserspiegellinie</u>

3.1. Wasserspiegel bei Q_a = 5,3 m³/s

Profil	Profil				Mittelwe	rte		1		
		Wassertiefe t _m	Sahlbreite h _m	Fm	Um	$F_m = \frac{F_m}{U_m}$	v = Q Fm	= Var. 43	$= \frac{V_{rr}^{2}}{k^{2} h_{rr}^{4/3}} h_{r} = 1 J_{r}$	Wasserspiegel-
			Trieb			aI = 2,			The state of the s	
15 Turbinen auslauf	69,0	0,61	6,50 V	4,34	8,2	0,53	0,51	0,00067	0,046	601,35
adstate								4		601,40
15			Trieb	verksanl	age II	$Q_{aII} = 3$,1 cbm/	5		
Turbinen	126,0	0,63				0,56			0,137	601,35
auslauf								F 15 15		601,49

3.2. Wasserspiegel bei MQ_e = 2,35 m³/s

	Profil				Mittelwe	rte		Ja		
fil		Wassertiefe	Schlbreite	Fm	Um	Fm = Fm_	$v_m = \frac{Q}{F_m}$	2	$h_r = IJ_r$	Wasserspiegel-
ir. I	Entfern	t _m	h _m			Um	-m	= Val 12 R 43		höhe
			Tr	iebwerk	I steht	still be				
			Tr	iebwerk	II bei l	1Q = 2,	35 cbm/	s		
										601,10
rbinen	126,0	0,44	6,50	3,05	7,75	0,394	0,77	0,0021	0,26	001,10
slauf										601,36
-										

4. Berechnung des Gefälles

4.1. Ausbaugefälle bei Q a = 5,3 m³/s

```
Triebwerk I Q_a = 2,2 \text{ cbm/s}
                                 604,39 m 06 604,43
 Stauziel geplant
                                  0.01 m
 abz. Rechenverlust geschätzt
 abz. Unterwasserspiegel bei
                                 601,40 m Ub 601,49
Ausbaugefälle Turbine I H<sub>ka</sub> = 2,98 m
      Triebwerk II Q = 3,1 cbm/s
                                 604,43 m OU 604.43
Stauziel geplant
                                  0,01 m
abz. Rechenverlust geschätzt
abz. Unterwasserspiegel bei
                                 601,49 m uh 601,49
    Turbine
Ausbaugefälle Turbine II H<sub>ka</sub> = 2,93 m
```

4.2. mittleres, nutzbares Gefälle bei MQ_e = 2,35 m³/s

```
Triebwerk I steht still!

Triebwerk II MQ = 2,35 cbm/s

Stauziel geplant 604,43 m 604,43 m abz. Rechenverlust geschätzt 0,01 m abz. Unterwasserspiegel bei Turbine 601,36 m - C01.49

mittleres Gefälle Turbine II H = 3,06 m = 2,94
```

5. Berechnung der Turbinenleistung

Wirkungsgrad der Turbinen geschätzt 7 = 0,75

a) Ausbauleistung bei Q = 5,3 cbm/s

Triebwerk I Q = 2,2 cbm/s

 $P = \frac{Q \times H \times \eta}{75 \times 1,36}$ (KW)

 $P_{a \text{ Welle}} = \frac{2200 \times 2.98 \times 0.75}{75 \times 1.36} = \text{rund } 48 \text{ KW}$

abz. rund 20 % Verluste für Riemenantrieb und Generator

Pa Schalttafel Turbine I rund 38 KW

Triebwerk II Q = 3,1 cbm/s

 $P_{aWelle} = \frac{3100 \times 2.93 \times 0.75}{75 \times 1.36} = \text{rund } 66 \text{ KW}$

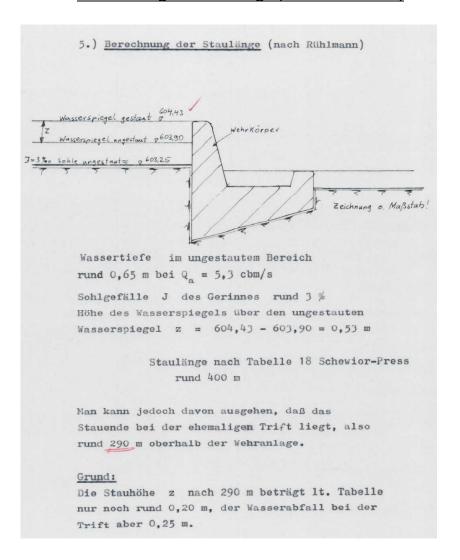
abz. rund 20 % Verluste für Getriebe und Generator

Pa Schalttafel Turbine II rund 53 KW

Gesamte Ausbauleistung = 38 KW + 53 KW = 91 KW

b) mittlere, nutzbare Leistung bei MQ_e = 2,35 cbm/s

Triebwerk I steht still!


Triebwerk II MQ = 2,35 cbm/s

 P_{m} Welle = $\frac{2350 \times 3.06 \times 0.75}{75 \times 1.36}$ = rund 52 KW

abz. rund 20 % Verluste für Getriebe und Generator

m Schalttafel Turbine II rund 42 KW

6. Berechnung der Staulänge (nach Rühlmann)

7. Berechnung der Abflüsse über die Wehranlage

```
Annahme: Vollkommener Überfall
Wehrschützen sind geschloßen

Q = 2/3 x / x x \sqrt{2g} x b x \left[ (h+v^2)^{3/2} - (v^2)^{3/2} \right]

Q = Wassermenge in cbm/s

\( \mu = \text{Uberfallkoeffizient} = 0.55 \)

b = Breite des Wehres = 24,60 m

h = Höhe über der Wehrkrone in m

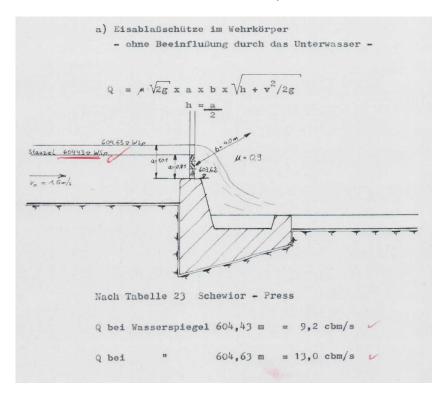
v = Wassergeschwindigkeit vor dem Wehr

geschätzt 1,5 m/s

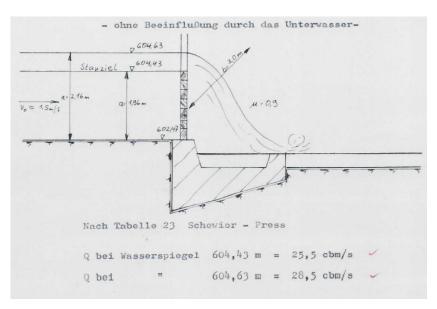
Q nach Tabelle 22 Schewior - Press

bei h = 0,10 m Q \( \text{2g} \) 2,40 cbm/s

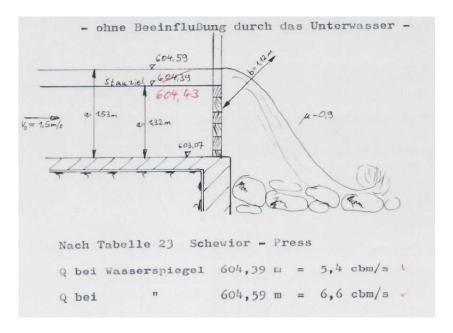
bei h = 0,20 m Q \( \text{2g} \) 5,60 cbm/s

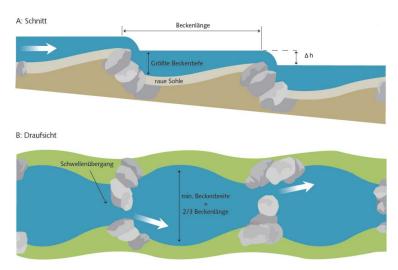

bei h = 0,30 m Q \( \text{2g} \) 9,30 cbm/s

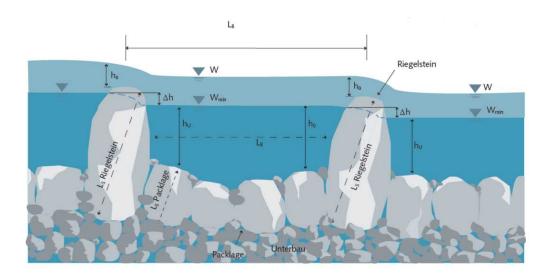
bei h = 0,40 m Q \( \text{2g} \) 13,00 cbm/s


bei h = 0,50 m Q \( \text{2g} \) 17,70 cbm/s
```

8. <u>Berechnung der Leistung der Schützen</u>


8.1. Eisablassschütze im Wehrkörper


8.2. Grundablassschütze im Wehrkörper


8.3. Grundablassschütze bei Triebwerk 1

9. FAH hydrauliche Berechnung Fischpass

- h₀ Wassertiefe oberhalb des Riegels
- h_u Wassertiefe unterhalb des Riegels
- h₀ Überfallhöhe über Stein
- L_R Riegelabstand
- L_B Beckenlänge
- L_s Steinlänge
- W_{min} Wasserspiegel bei MNQ oder Q30
- W Wasserspiegel bei
- Δh WSP Unterschied zwischen zwei Becken

Raugerinne mit Beckenstruktur

Lв	1,8 m	lichte Beckenlänge
blb	1,2 m	lichte Beckenbreite
h_u	0,6 m	hydr. Mindesttiefe unterh. Trennwand
hs	0,2 m	Wassertiefe Schwellen / Schlitze
bs	0,2 m	Lichte Weite Durchlässe
Δh	0,2 m	maximale Absturzhöhe
PDmax	250 W/m ³	Energiedissipation o. Störsteine
v_max	2,2 m/s	max. Strömungsgeschw. o. Störsteine
PDmax	300 W/m ³	Energiedissipation m. Störsteinen
v_max	2,1 m/s	max. Strömungsgeschw. m. Störsteinen

Konstruktive Rahmenbedingungen

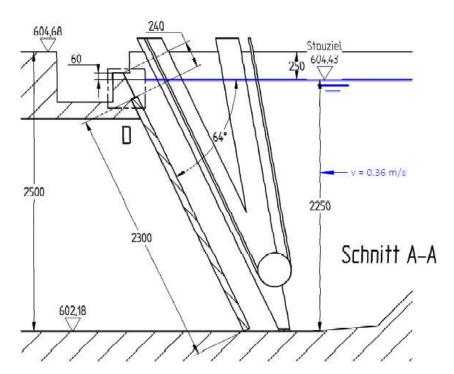
h	2,94 m	Anlagengefälle	
Δh	0,20 dm	gewählte Absturzhöhe (19,6 cm)	
L_S	0,60 m	Länge Schlitz / Schwelle	
L_S h_Bm	0,60 m	mittlere Beckentiefe	
b_Bm	1,20 m/s	mittlere Beckenbreite	

Berechnung Beckenanzahl / Gesamtlänge

n_Becken	15 Stück	ermittelte Beckenzahl	
n_Stege	15 Stück	ermittelte Schwellenzahl	
Lges	36 m	ermittelte Gesamtlänge FAH	

Hydaulische Rahmenbedingungen

ρw	996 kg/m³	Dichte Wasser
g	9,81 m/s ²	Ortsfaktor
g Q	$0,17 \text{m}^3/\text{s}$	Abfluss FAH


V_Bm 1,296 m³ mittleres Beckenvolumen

Berechnung Energiedissipation

PD	251 W/m³	ermittelte Energiedissipation

Symbole und Abkürzungen von Merkblatt DWA-M 509

10. Anströmgeschwindigkeit Rechenfeld

$$v = Q / A$$

$$Q=3,1\frac{m^3}{s}$$
 (Anhang A4.1)

$$A = h \bullet B$$

$$h \cong 2,25m$$

$$B = 3.8m$$

$$A = 2.3 \times 3.8 = 8.55$$

$$v = 3.1 / 8.55$$

$$v = 0.36 \frac{m}{s}$$